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ABSTRACT

This thesis examines the topic of chaotic time series. An overview of | chaos,
dynamical systems, and traditional approaches to time series analysis is provided, followed
by an examination of the method of state space reconstruction. State space reconstruction
is a nonlinear, deterministic approach whose goal is to use the immediate past behavior of
the time series to reconstruct the current state of the system. The choice of delay
parameter and embedding dimension are crucial to this reconstruction. Once the state
space has been properly reconstructed, one can address the issue of whether apparently
random data has come from a low-dimensional chaotic (deterministic) source or from a
"random" process. Specific techniques for making this determination include attractor
reconstructién, estimation of fractal dimension and Lyapunov exponents, and short-term
predibtion.

If the time series data appears to be from a low-dimensional chaotic source, then
one can predict the "continuation" of the data in the short term, explbiting the fact that
chaotic systems are fairly predictable in the short term. This is the "inverse problem" of
dynamical systems. In this thesis, the technique of local fitting is used to accomplish the
prediction. Finally the issue of noisy data is treated, with the purpose of highlighting where

further research may be beneficial.
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I. INTRODUCTION

A. CHAOS AND DYNAMICAL SYSTEMS

1. Definitions and Examples

We start by considering a continuous-time, chaotic dynamical system, where the
differential equations giving rise to the observed dynamics are known. Such a system can

be expressed as
X =Fx(@)
where x(t) = [x,(t),x,(t),%;(t),...,x;(t)] represents the vector of dynamical state variables,

and where D > 3. For the discrete time case, the dynamical system can be expressed as an
invertible discrete time map of the form: x(t+1)=F(x(t)), where x(t) is again the vector of
dynamical stafé variables, but where D > 2. The number of degrees of freedom in a
contiﬁuous time system is equal to the number of first order autonomous ordinary
differential equations in the system. In a discrete time system, the number of degrees of
freedom is the same as the number of components in the state vector x(t). The number of
degrees of freedom a system has determines whether or not chaos could possibly exist in
the system. The Poincare-Bendixson Theorem states that chaos cannot exist in continuous
dynamical systems with only one or two dynamical degrees of freedom (Strogatz, 1994).
Further, other authors have shown that for an invertible discrete time map, chaos cannot
exist in a one-dimensional map. It is noted, however, that noninvertible maps in one

dimension can exhibit chaos, as in the case of the logistic map, which will be discussed




later in this chapter. It is also noted that the function F must be nonlinear in order for the
dynamical system to exhibit chaos.

What ddes it mean for a dynamical system to exhibit chaos? A commonly used
definition is that a system exhibits chaos if the trajectory x(t) is aperiodic over the long
term, and that it exhibits sensitive dependence on initial conditions. Such systems exhibit
unpredictable Eehavior in the sense that for given initial conditions known with finite
precision, the long term behavior cannot be predicted, except to say that the states are
constrained to a certain finite region of state space, dictated by the existencé of a strange
attractor. Stated another way, two nearby initial conditions will exhibit an exponential
divergence of their respective trajectories. A measure used to quantify how fast the two
trajectories diverge is the largest Lyapunov exponent. Lyapunov exponents, and their
calculation will be discussed more fully in Chapter I1I.

As a class of observable signals, chaos lies between the domain of predictable,
regular, or quasi-periodic signals and the totally irregular stochastic signals, commonly
called "noise", which are completely unpredictable. As a result, chaos has some
interesting properties: namely that it is irregular in time and slightly predictable, and that it
has structure in phase space. This structure is exhibited in its strange attractor.
(Abarbanel, 1996)

A strange attractor is the geometrical structure formed by the asymptotic states of
a chaotic system. Loosely speaking, an attractor is a subset of phase space which
“attracts" phase points from other regions of phase space near the attractor. The region of

phase space from which it attracts points is called the attractor's basin of attraction. Once




a phase point enters an attractor, it does not leave it (Farmer, 1982). On this attractor, the
dynamics are characterized by stretching and folding. Stretching occurs because of the
divergence of nearby trajectories and folding constrains the dynamics to a finite region in a
subspace of dimension greater than or equal to n. This subspace is the smallest space
which embeds the attractor. In contrast to non-chaotic systems which have attractors of
integer dimensions (i.e. points and limit cycles), chaotic systems have strange attractors
characterized by a non-integer dimension d (Kugiumtzis,1994). In fact, the term
"strange" originally referred to the fact that the attractor has fractal dimension, and is
therefore called a fractal set. Many definitions of dimension exist, and this subject will be
treated more fully in Chapter ITI. The dimension of a dynamical system and its Lyapunov
exponents afe examples of invariants of the system: properties which exist that
 characterize the dynamical system, independent of any particular trajectory.

As an example of a strange attractor, consider the famous Lorenz system of
differential equations, which now act as a standard set of equations for testing ideas in

nonlinear dynamics. The equations are:

x=-o(y—x), . (1.1)
y=-Xz+rx-y, (1.2)
z=xy-bz. (1.3)

A standard set of parameter values for equations (1.1) - (1.3)is r=28,b=28/3, ¢=10.
With these parameter values, the orbits of the Lorenz system exhibit aperiodic, chaotic
motion. Figure 1.1 depicts the phase portrait of the strange attractor upon which the
orbits of the Lorenz system reside, for these parameter values. This figure was taken from

Strogatz (1994, p. 332).




2. Observed Chaos and Time Series

With this basic understanding of chaotic dynamical systems, we now treat the issue
of observed chaotic systems. For example, suppose that we sample a continuous time
dynamical system (say the Lorenz equations) at time intervals T, starting at some time t,,
and that we take as data the scalar variable x(t). As a finitely sampled evolution, x(t) can

be represented in the form: |
x(fo + (n+ 1)t,) ~ x(8o +n7y) + Ts(F(x(fo +n75)) - 1),

where e, is a unit vector in the x direction, and F in this specific case represents the
dynamics of the Lorenz equations. The data composed of these sampled values of x(t) is
our scalar-valued, univariate time series, which will be further denoted as {s(t)}, or
equivalently, as {s(n)}, n=1, 2,... \N. This theory can be made general, i.e., with the
choice of any continuous dynamical system and any choice for the state variable being
sampled. Obviously, a discrete dynamical system would not require any sampling to be
done since the successive iterates would already be in the above form with T, =1 Furthef,
it is noted that one may quite likely obtain an {s(t)}, not through sampling of a known
dynamical system, but by simply taking observations of some system of iﬁterest where the
underlying equations are unknown.

In general, if one were observing some unknown system, it would be typical to
observe only one or a féw of the dynamical variables which govern the behavior of the
system. As we will see, time series data collected by either sampling a dynamical system

where the state equations are known, or obtained by simply taking observations of some




(unknown) dynamical system, can go a long way in helping us determine the nature of the
system at hand.

In particular, one thing we can hope to accomplish by analyzing a "random
looking" time series {s(t)} is to determine the nature of the system's dynamics, i.e.,
whether or not low-dimensional chaos is present. By low-dimensiénal we will mean that
the underlying attractor's dimension is less than five; there is no explicit definition in the
literature of what it means to be low-dimensional. If low-dimensional chaos is detected,
we can then calculate the invariants of the attractor, reconstruct a representation of the
attractor itself, and make short-term predictions of future values of {s(t)}. We emphasize
the possibility of short-term prediction. If the system that we are observing is indeed
chaotic, we know that orbits exhibit sensitive dependence on initial conditions. This means
that unless we are able to observe and make predictions with an infinite amount of
accuracy, our predicted trajectory is certain to divergé from the true trajectory, given
enough time. Indeed, the impossibility of long-term prediction of a chaotic orbit is a
hallmark of what it means to be chaotic. But a low-dimensional, chaotic system has
enough "structure" to allow short term prediction.

In subsequent chapters and sections, we address pertinent questions such as: With
regard to the analysis and short-term prediction of such time series, does it matter which
state variable is observed? Can the observations of more than one state variable be used?
What is the effect of sampling time t,? For now, though, we turn to the more general

topic of time series and traditional approaches to analyzing them.




B. APPROACHES TO TIME SERIES ANALYSIS
1.  Linear Stochastic Approach (AR, MA, ARMA)

This section does not propose to be a comprehensive discussion of time series
analysis; rather, it serves to highlight a few of the more common approaches to the
subject. The primary reference for this section is Gershenfeld/W. eigend (1994).

We first consider a linear, stochastic approach to time series analysis. The
approach we will discuss, namely the Box-Jenkins class of models, assumes that the
dynamics underlying the time series is stationary and linear, with a stochastic element.
This class of models is useful when one has a time series in which there is no apparent
seasonal trend, where there is dependence between present and past values of the time
series, and where the time order of the observations is taken into account. Clearly, this
assumption of dependence, with no apparent trend, would be appropriate for the study of
many dynamical systems and their related observed time series. These models, once built,
can be used for predictive purposes. The accuracy o.f the predictions, of course, depends
on the appropriateness (goodness of fit) of the type and order of the model to the time
series a£ hand. (Chatfield, 1996)

Linear time series models have some desirable features, namely that they are
relatively straightforward to implement and that they can be understood in great detail.
However, it is important to note that this class of models may, of course, be completely
inappropriate for the time series at hand, i.e., for one that has arisen from a nonlinear
source. A basic assumption of the linear time series analysis discussed here is that the

dynamics are time invariant, that is, that the system exhibits stationary dynamics.
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Let us first discuss one type of linear model, the Moving Average (MA) model.
Given the time series {s(t)}, a moving average model implies that the current value of the
time series depends on the mean value of the time series, as well as the current and past q

values of the Gaussian error terms. Each error term g, represents the difference between

the time series value s(t) and the mean value p. The fact that the current and past q values
of the error terms appear in the model' allows for the modeling of dependence between
time series values. The model takes the form:

Sy = u+§0b]€t—j.
The €, are assumed to be uncorrelated radom variables with mean zero and finite

variance ¢, and the b, are coefficients. The &, are usually scaled so that b, = 1. The

model implies that

E(s))=0 and Var(s) = o2 Fio b2,
The value for q is determined by the user, with the resulting model being called a
qth-order moving average model MA(q). Several techniques exist for determining the
appropfiate order éf the model (Chatfield, 1996).
Another type of linear model is called the Autoregressive (AR) Model. Here, the

model is represented by

St = é a;Sei+e;.
This is called a pth-order autoregressive model (AR(p)), and it implies that the current
value for s(t) depends on the p past values of the {s(t)} and a Gaussian error term. This

model is much like a multiple regression model, but s, is regressed not on independent

variables but on past values of s; hence the prefix 'auto’.




The next step in complexity, and hence the next type of linear model we consider,
is one having both AR and MA parts. This is called an ARMA(p,q) model, with p and q
being the orders of the AR and MA parts, respectively. The model takes the following
form:

e f)a,—st_i + i bier;.

=1 0

- ARMA models have dominated all areas of time series analysis and discrete-time signal
processing for more than half a century. If a linear model is good, it transforms the signal
into a small number of coefficients plus residual white noise. Fitting the coefficients of a
linear model to a given time series and selecting the order of the model are crucial, and
involve studying the power spectra and autocorrelation coefficients of the time series.
Many good books exist which treat this subject, including Chatfield (1996) and
Box/Jenkins (1976).

The important idea to take away from the study of linear time series models is that
ARMA coefficients, power spectra, and autocorrelation coefficients contain the same
information about a linear system that is driven by uncorrelated white noise. Therefore,
only if the power spectrum is a useful characterization of the relevant features of a time
series will an ARMA model be a good choice for describing it. However, this type of
model can fail to model the dynamics of even simple nonlinearities, if those nonlinearities
lead to complicated power spectra. Two time series can have very similar broadband
spectra but may b¢ generated from systems with very different properties, such as a linear
system that is driven stochasticallly by external noise, and a deterministic (noise-free)

nonlinear system with a small number of degrees of freedom. Taking an example from




Gershenfeld/Weigend (1994), let us consider the discrete, one-dimensional logistic map

given by
x(n+ 1) =rx(n)(1 - x(n)) (1.4)
with parameter r = 4. They point out that although equation (1.4) is completely

deterministic, it can easily generate time series with broadband power spectra. In the
context of an ARMA model, a broadband component in a power spectrum of the output
must come from external noise input to the system, but here it arises in a one-dimensional
system as simple és equation (1.4). Therefore, even simple nonlinearities demonstrate that
linear time series analysis can be inappropriate and ineffective for the time series at hand.
2. Nonlinear Stochastic Approach
In 1990, Tong (Tong, 1990) took an important step beyond linear models for
| prediction. He was the first to suggest the use of two globally linear functions, instead of
only one. The resulting model, called a threshold autoregressive model (TAR), is globally
nonlinear. Specifically, a TAR model chooses one of two local linear autoregressive
models based on the value of the system's state. From here, the next step is to use many
local linear models;, however, the number of such regions that must be chosen may be very
large if the system has even simple nonlinearities (such as eciuaiton (1.4)). A natural
extension of the form of the ARMA model includes quadratic and higher order powers in
the model; this is called a Volterra series (Volterra,1959).
TAR models, Volterra models, and their extensions do much to expand the scope
of possible methods to model time series, but these come at the expense of the simplicity
with which linear models can be understood and fit to data. For nonlinear models to be

useful, there must be a process that uses the data to guide and restrict the construction of




the model. Lack of insight into this problem has limited the use of nonlinear, stochastic
time series models. Further, this method neglects the fact that the irregular, stochastic
component of the time series may be largely deterministic, so predictions would be less
accurate using this stochastic approach than they would be if a nonlinear, deterministic
approach were used.

3. Multivariate Adaptive Regressive Splines (MARS)

Multivariate Adaptive Regression Splines is a new methodology, due to Friedman,
for nonlinear regression modeling. The MARS procedure is based on a generalization of
spline methods for function fitting. Splines have been extensively studied and have may
desirable properties. The basic underlying assumption is that the function to be estimated
is locally relatively smooth, where smoothness is adaptively defined depending on the local
characteristics of the function. In this manner, MARS addresses the general problem of
modeling and interpreting a general predictive relationhip between "current" value for s(t)
and prévious values of s(t). This method is designed especially to handle the task of
flexible regression modeling of high dimensional, and possible noisy, data. For more
details about this method, we direct the reader to Friedman (1991) and Gershenfeld/

Weigend (1994).
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Figure 1.1. Lorenz attractor. From Strogatz (1994, p. 332).
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II. METHOD OF STATE SPACE RECONSTRUCTION

A. THEORY OF STATE SPACE RECONSTRUCTION

In contrast to the time series analysis methods discussed in Chapter I, the method
of state space reconstruction is a nonlinear, deterministic approach: one that would be
fitting for a time series derived from a chaotic procéss. We are interested, then, in time
series that arise from observations of a deterministic dynamical system, such as a set of
differential equations. One goal of state space reconstruction is to use the immediate past
behavior of the time series to reconstruct the current state of the system (Casdagli, et al.,
1992). As with the other methods previously discussed, state space reconstruction
assumes that the dynamics producing the time séries is stationary.

Why would one want to reconstruct the state space? A good reconstruction can
be used to predict future values of the time series, calculate invariants of the dynamics,
and reconstruct an attractor which is diffeomorphic to the attractor in the space of the
original dynamical variables. One of the main accomplishments of this method is to
convert the problem of prediction from a problem of extrapolation of the time series into a
problem of interpolation within the state space.

Two methods exist to accomplish state space reconstruction. One method, the
principal components technique, will not be discussed or demonstrated in this thesis,
except to say that it is a standard procedure in signal processing and was first applied to
chaotic dynamical systems by Broomhead and King (Gershenfeld/Weigend, 1994). The

method that we will employ in this thesis, and which is currently the most widely used
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choice, is the method of delay coordinates. It is implemented as follows. Suppose that we
have an underlying (but possibly unknown) dynamical system x(n+1) = F(x(n)), where
x(n) is the state vector in a multidimensional phase space. Note that this system is discrete
and can represent either a discrete time map or a continuous time system sampied at finite
intervals. Suppose we have a time series consisting of discrete scalar observations of the
dynamical system which we denote by { s,p = {s(nt,)} , wheren=0, 1, ..., N. The time
series {s(n)} is related to the state vector of the underlying dynamical system by
s(n) = h(x(nr, )), where his known as the measurement function (Kugiumfzis, 1994).
We can create a state vector y(n) by assigning coordinates

¥1(@) = s(n), y,(n) = s(0-1),..., yy(0) = s(n-(d-1)r),
where 1 is the delay parameter, and d is the embedding dimension. Note that T must be
an integer. When t > 1, we skip samples during the reconstruction. For instance, if
7, =0.01, and a delay parameter 1 of five is used, then one "skips" over the data
corresponding to .02, .03, .04, and .05 when constructing the state vectors. (Casdagli et.
al., 1991)

What is accomplished by such an embedding? One answer is that since the
dynamics are unknown, we cannot reconstruct the original attractor that géve rise to the
observed time series. Instead, we seek an embedding space where we can reconstruct an
attractor from the scalar data that preserves the invariant characteristics of the original
unknown attractor. This approach to reconstructing the attractor is based on Takens'
Theorem, which states that for an infinite amount of noise-free data and a smooth choice

of h(), one can always find an embedding dimension d which preserves the invariants of
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the dynamical system. Takens proved that under these conditions it is sufficient to choose
d> 2d,+1, where d, is the dimension of the attractor and d is an integer. Such a value
for d is called a "sufficient” d. Takens' theorem guarantees that the attractor embedded
in the d-dimensional state space (with sufficient d) is "unfolded" without any self
intersections. The condition d > 2 d ,+1 is sufficient, but not necessary, and an attractor

may be reconstructed successfully with a lower embedding dimension, perhaps as low as

d, + 1. This value for d is called the "necessary" d, and will vary from system to system.
Exactly how to go about reconstructing the attractor will be discussed in Chapter ITI.

As for the choice of T, with an inﬁnité amount of noise-free data, the actual value
of 7 is irrelevant; however, in practice one will never have an infinite amount of noise-free
data, so its value is important. With a finite amount of noisy data, the estimates of the
invariant measures d, and the Lyapunov exponents are found to depend on both d and .
So the choices for d and 7 are crucial to the reconstruction. Methods for choosing d and <
will be discussed in subsequent sections.

The state vectors y(n) serve to replace the scalar data measurements {s(n)} with
data vectors in Euclidean d-dimensional space, in which the invariants of the sequence of
points x(n) are represented with as much accuracy as in the original system. The new
space, and hence the reconstructed attractor in the new space, is related to the original
space of the x(n) by smooth, invertible transformations. SpeciﬁcalIy, the reconstructed
attractor exhibits the same topological characteﬁstics and geometrical form as the original

attractor (Crutchfield et al., 1980). This means that we can utilize the reconstructed state

15




space to learn as much about the system using the observations {s(n)} as we could if we
had been able to use the "true" x(n) values. (Abarbanel, 1996)

We emphasize tﬁat Takens' Theorem allows any smooth choice of h("), the
measurement function. That is, although we will demonstrate these ideas in this thesis by
utilizing a time series consisting of samples of the scalar dynamical variable x(t) of the
Lorenz system (equations (1.1) - ( 1.3)), one could actually utilize any smooth function of
the three dynamical variables of this system to comprise the tirn¢ series. For example, one

might try cos(x*(nt,) + y*(nt,)), withn=1, 2, .., N to generate the time series.

B. CHOOSING THE DELAY PARAMETER

1. Theory

As stéted previously, if one had an infinite amount of clean data, the choice of
delay parameter T would be unimportant. However, since we will be dealing with
finite-length, possibly noise-contaminated data, the choice of 7 is important, so we will
need some prescription for determining it. As we will see, poor choicés for T may lead to
inaccurate short-term predictions and estimates of invariants, as well as distorted pictures
of the attractor. In particular, if © is chosen too small, the coordinates s(n) and s(n+t) will
not be "independent" enough. This basically means that not enough time has passed from
the observation of s(n) to s(n+t) to capture any "new" information in the coordinate
s(n+t). Thus, we will not see any of the dynamics unfold during this period of time.

Further, the plot of the reconstructed attractor will appear "stretched out" in the

16




y,(n) = y,(n) = y,(n) =... direction. This problem with short time intervals can be remedied
by taking differences between coordinates and dividing by the time interval (analogous to
taking derivaﬁves), but this procedure introduces noise into the phase space picture
(Crutchfield et. al., 1981).

If 7 is chosen too large, s(n) and s(n+t) are "too independent”; in other words, we
take the risk that they appear "random" with respect to each other. Further, we can no
longer make a one-to-one correspondence with points of the time series and points on the
original attractor. Therefore, we seek a value for T which is large enough for s(n) and
s(n+1) to be independent enough so as not to give redundant information, but not so large
that they are completely independent, in a statistical sense. Many authors treat this subject
in the literature (with many different interesting ideas), but we choose to illustrate the
approach based on the concept of looking for the first minimum of the average mutual
information function, presented by Abarbanel (1996). This method is related to other
popular ideas for determining the delay parameter, including use of the generalized

correlation integral (see Liebert/Schuster (1989)).
2. Chaos as a Source of Information

We have already mentioned that a hallmark of chaos in a dynamical system is its
"sensitivity to initial conditions." In particular, two nearby initial conditions (points in the
state space) move apart at an exponential rate, determined by the most positive Lyapunov
exponent A. Suppose that we have a fixed, finite resolution in our state space. This

means that below a certain tolerance o, we cannot tell points apart, i.e., if x,(t,) and x,(t)
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are points in the state space, and 0 < |x,(t,) - X,(t)] <a, then the two points will appear
to us as the same point from our perspective in the finite resolution state space. However,
in our chaotic system the orbits x,(t) and x,(t) will evolve and begin to move apart as time

passes. Specifically, at a time t' > t,, the distance between the two points has grown to
|x1() = x2()| = [x1(20) — x2(t0)| exp(Mlt’ — o), 2.1

where . is the largest Lyapunov exponent, and is necessarily positive for a chaotic
dynamical system. When this distance exceeds o, we are then able to distinguish between
the two points x,(t) and x,(t'). Inthis sense, we have uncovered information about the
population of the state space, thanks to the instability or chaos present in the system. We
begin to see even in this simple example how the magnitude of the largest, positive
Lyapunov exponent measures the rate at which the system creates or destroys information.
For this reason, A is sometimes measured in bits of information per data sample. When A
is measured in bits of information per data sample (call it A"), it is related to the A given in

equation (2.1) in the following way:
A* =log,[exp(At,)].

Here, we have seen that A, the largest positive Lyapunov exponent, plays an
important role in the generation of information. If A had been negative or zero, no such
information would have been uncovered. We take a brief excursion here to discuss and
understand Lyapunov exponents more fully. In a nonlinear sy;stem with D degrees of
freedom, there are D Lyapunov eprnents. Sometimes methods exist for finding them
analytically (see Strogatz (1994)); we will discuss how to determine them numerically

from experimental time series data in Chapter I1I.
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In a system with a chaotic attractor, the sum of these D Lyapunov exponents is
negative, which dictates that volumes of phase space contract under the flow determined
by the system. Further, a system that is chaotic will have a positive Lyapunov exponent,
in order to satisfy the "sensitive dependence on initial conditions" property. Also, in any
continuous-time dynamical system (such as a system of one or more differential
equations), one Lyapunov exponent must be zero (Wolf et.al., 1984). As a result, we
know that we must have at least one negative Lyapunov exponent, in order to get a sum
of exponents which is negative. All of this further explains how an attractor‘is formed as a
result of the stretching (explained by the positive Lyapunov exponents) and the folding
(explained by the negative Lyapunov exponents and the dissipative nature of phase space
volumes) of orbits. This also explains why a minimum of three dimensions is necessary for
chaos to exist in a continuous time-dependent system: we need one exponent to be
positive, so that chaos is possible, one is zero because we have a differential equation as
the source of the dynamics, and a third exponent must exist in order for the sum of all
three to be negative. It is noted that for invertible discrete maps, there is no zero
exponent, so we need only two dimensions for chaos to exist: one whose Lyapunov
exponent is positive and one whose Lyapunov exponent is negative.

We now return to the prescription for choosing . The primary reference for this
prescription is Abarbanel (1996). We start with a definition. The mutual information
between measurement a, drawn from a set A = {a;} and measurement b, drawn from a set

B = {b,}, is the amount learned from the measurement of a, about the measurement of b,.
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Measured in bits, this quantity is

o s )
where P,;(a,b) is the joint probability density for measurements A and B resulting in
values a and b. P,(a) and P,(b) are the individual probability densities for the
measurements of A and of B. In a deterministic system, these probabilities can be
 estimated by constructing a histogram of the a, and the b, and using the ratio of frequency
of occurence to the number of observations as the estimated probability.

Some insight into mutual information may be gained by noting that if the value a is
independent of b, then P,;(a,b) =P,(a) P4(b), and the amount of information between the
two measurements is zero, as it should be. The average mutual information between a set
A of measurements and a set B of measurements is

Lis= % Pio(a, ) logz[}%:%:l.
This quantity is strictly a set theoretical idea which establishes a criterion for the mutual
dependence of two sets of measurements based on the idea of the information connecting
them. We can now use this idea to give a more quantitative definition of the independence
of s(n) and s(n+t).

If we take as the set of measurements A the values of the observable {s(n)}, and

for the set B we take the values of {s(n+t)}, then the average mutual information betwen

these two measurements is

_ P(s(n),s(n+1))
1(3) = i PO, (1 + Yo, | pesoa) ], 2.2)

Note that I(t) is always zero or positive. When t becomes large, the chaotic behavior of

the system makes the measurements s(n) and s(n+t) become nearly independent in a
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practical sense, and I(t) will tend to zero. The principle of choosing T to be the first
minimum of I(t) seems to correspond well with wanting s(n) and s(n+1) to be independent
enough, but not too independent. Abarbanel points out that the average mutual
information function reveals a different aspect of the system than does the more familiar
linear autocorrelation function, and is obviously more appropriate for data arising from
nonlinear sources. A nice property of equation (2.2) is its invariance under smooth
changes of coordinate system. This means that the quantity I(t) is the same whether
evaluated in time delay coordinates or in the original (but sometimes unknown)

coordinates.
An S-PLUS (Version 3.3) routine for calculating the average mutual information

function is given in Appendix A. It was used on a time series of 1000 samples of the x(t)

variable from the Lorenz equations, with t, = 0.01. The time series was generated in

MATLAB (Version 4.2) using ode45 (a Runge-Kutta 4th and 5th order ordinary
differential equation solver), and the initial condition [5, 5, 5]. The result of applying the
S-PLUS routine to the Lorenz data is shown in Figure 2.1. We see that a delay paraméter
of five should be chosen, since it corresponds to the first minimum of the average mutual
information function. When running the S-PLUS routine, it is necessary to either specify
the breaks for the histograms before invoking the S-PLUS hist and hist2d functions, or
to let the S-PLUS software determine the appropriate breaks. A break ina
one-dimensional histogram is a segment of the horizontal axis. The horizontal axis
represents possible values of the observable, and the vertical axis is used to plot the

number of data points which fall into a particular break. The set of breaks for the

21




histogram should be mutually exclusive (no overlaps) and should include all possible
values for the observable. We found that using small, finely-spaced, breaks gave
approximately the same results (within plus or minus one of the value for T) as when we
let the S-PLUS functions decide where the breaks should be. By "small", we mean that

we used an individual break size which corresponded to approximately five percent of

| max({s(n)}) - min({s(m)}) |.

C. CHOOSING "NECESSARY" EMBEDDING DIMENSION

We already know that choosing an embedding dimension d > 2d, + 1 will be

sufficient to reconstruct the state space, but we seek the minimum d that will serve this
purpose, that is the minimum d that will ensure that the attractor, when reconstructed in
this space, is completely "unfolded”. Such a d is called the "necessary" embedding
dimension. What if d is incorrectly chosen? Takens showed that any d greater than or
equal to the sufficient d succeeds in unfolding the attractor, because once the attractor is
unfolded, it remains unfolded for all higher embedding dimensions. However, we want to
use as small an embedding dimensio_n d as possible to ensure accuracy of predictions.
Predictions using a local approximation method will be illustrated in Chapter IV. We will
see that predictions get worse as the embedding dimension is increased beyond the
necessary embedding dimension (May/Suigihara, 1990).

Many different approaches exist in the literature, but we choose to demonstrate the
technique of global false nearest neighbors presented by Abarbanel (1996). It is necessary

to point out that the d obtained in this manner, which we further denote as d;, is a global
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unfolding dirnension and may be different from the local dimension of the underlying
dynamics. To illustrate the difference, consider a Mobius strip. The global embedding
dimension would be three, but locally the Mobius strip is two-dimensional. We seek the
global unfolding dimension when recontructing the state space.

Suppose that we have reconstructed the state space using dimension d, and have
created the data vectors y(k) = [s(k), s(k-t),...,s(k-(d-1)t)] using the time delay suggested
by the average mutual information technique. Using Euclidean distance as our norm, we
examine the nearest neighbor in phase space to the vector y(k). This will be a vector

Y' & =", s &), (k(d- 1)),
and its time label is not necessarily related to the time k at which the vector y(k) appears.
However, k is a function of k. We now reason that if the vector y™ (k) is truly a neighbor
of y(k), then it came into the neighborhood of y(k) because of the dynamics of the system
involved. It is either the vector just ahead or juét behind y(k) along the orbit, if the time
steps along the orbit are small enough, or it arrived in the neighborhood of y(k) through
evolution along the orbit and around the attractor. Since attactors are generally quite
compact in phase space, each phase space point will have numerous neighbors, provided
one has enough data points to populate the state space well.

If the vector y'" (k) is a false neighbor of y(k), having arrived in the latter's
neighborhood by projection from a higher dimension because the present dimension d does
not unfold the attractor, then by going to the next dimension d + 1 we stand a good
chance of moving this false neighbor out of the neighborhood of y(k). In this way,

starting with a dimension d, we can look at every data point y(k) and its nearest neighbor
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¥ (k) and determine the dimension at which we remove all false neighbors. At that
point, we will have determined the minimum dimension d; at which the attractor is
unfolded.

In order to implement this procedure, we need a method for determining change in
the distance between a point y(k) and its nearest neighbor ¥y (k) when moving to
&imension d+ 1. As we change from dimension d to d + 1, the additional component of
y(k) is s(k+d) and the additional component of y™(k) is s (k+dt). In order to
determine whether y(k) and y"™(k) are near or far in dimension d + 1, we need only
compare [s(k+dt) - s"™(k+dt)| with the distance between nearest neighbors in dimension d.
If the term occuring in dimension d + 1 is large compared to the distance in dimension d
between nearést neighbors, then we have found a false neighbor. Ifit is not large, we have
a true neighbor.

The square of the Euclidean distance between the nearest neighbor points in
dimension d is

Rahy? = £ [0+ (m— 1)) ™+ (m— o),
while in dimension d + 1 it is
Ran(® = 5, [s(k+ (m— 1)) - s (+ om - 1))

The distance between points when seen in dimension d + 1 relative to the distance in

R, (=R 4(k)? _ |sCerdry—s™ (s |
Ra> Ry(k) '

When this quantity is larger than some appropriate threshold, we have a false neighbor. If

dimension d is

the number of data points is enough to adequately populate the attractor, the
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determination of true vs. false neighbor is fairly insensitive to the value of the threshold.
We note that the search for nearest neighbors among a large number of data points is
computationally cambersome. Many authors suggest using a kd-tree search scheme,
which takes O(N log N) operations, for N data points (Farmer/Sidorowich, 1987).

If we have clean data from a chaotic system, the percentage of false nearest
neighbors will drop from nearly 100% in dimension one to strictly zero when dg is
reached. A MATLAB scheme which implements the above procedure is given in
Appendix B. It does not utilize a kd-tree search, however. Figure 2.2 depiéts the result
of running this program on the Lorenz data series, for N = 1000 and a threshold of ten.
Figure 2.3 depicts the result of running this program for N = 500 and a threshold of five.
As expected, increasing the number of data points used allows one to use a "less
discriminating" threshold. In both cases, though, we see that d; =3 for the Lorenz
system. We note that other effective algorithms, which use different criteria, exist in the
literature for accomplishing this same task of determining when neighbors are "near" or
"far" in dimension d + 1 (see Fitzgerald et. al., (1996)).

Now that we have a method for choosing the minimum embedding dimension and
delay parameter for a state space reconstruction, and assuming that we have a
low-dimensional, chaotic time series, we can expect to use our correctly-reconstructed
state space to predict future values of the time series, calculate invariants of the dynamics,
and reconstruct the underlying attractor. Before we attempt to accomplish these,
however, we should address how to determine whether or not the time series we have is

actually low-dimensional and chaotic. This will be the topic of Chapter III.
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Figure 2.1. Average Mutual Information in S-PLUS (Lorenz)
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Using threshold of 5; 500 data points; Lorenz Time Series
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III. TECHNIQUES FOR DISTINGUISHING BETWEEN
LOW-DIMENSIONAL CHAOS AND RANDOMNESS

A RECONSTRUCTING PHASE PORTRAITS

Suppose we have an aperiodic, irregular-looking time series {s(n)}, and we want
to determine whether the time series arises from a random (stochastic) process or whether
the apparent "randomnéss" is due to the presence of low-dimensional chaos. Recall that
chaotic behavior causes orbits to exhibit long-term aperiodicity, so data arising from this
type of orbit, though deterministic, may appear "random" to the eye, and perhaps to other
more quantitative statistical tests of randomness.

We will now discuss several methods to determine whether the time series arises
from a low-dimensional, chaotic process or not. We emphasize, however, that these
methods are designed for detecting Jow-dimensional chaos. That is, if the time series
arises from a high-dimensional, chaotic source, it W111 not be possible to distinguish it from
a randomly-generated time series using these methods. In fact, most pseudo-random
number generators utilize a high-dimensional, chaotic (but still deterministic) dynamical
system; and the numbers they produce are therefore called "pseudo-random" (Flandrin/
Michel, 1990).

The first method we discuss involves reconstructing the phase portrait. After one
chooses the correct minimal necessary embedding dimension d; and delay parameter 7,
and constructs the state vectors y(n), one can plot these state vectors as d;-dimensional
points in the phase space (which, recall, is diffeomorphic to the original phase space of

dynamical variables). When d, is three or less, the space is obviously easily viewed.
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However, if dE is greater than or equal to four, one may have to look at "slices" of the

‘multidimensional attractor. The purpose of constructing such a plot is to visually detect
the existence of "order". If the time series arises from a low-dimensional, chaotic source,
we expect to see evidence of an attractor. However, if the time series is stochastic in
nature, then we would expect to see no such indication of "order".

A phase portrait recontruction is demonstrated in Figure 3.1 with 2000 points of
the time sen'es» generated by the Lorenz equations (1.1) - (1.3). Usingt=5and d =3, we
see a picture which is clearly diffeomorphic to the familiar "butterfly wings" of the Lorenz
strange attractor. To illustrate the fact that using a delay parameter which is either too
small or too large will distort the phase portrait, we depict in Figure 3.2, Figure 3.3, and
Figure 3.4 the result of using a delay parameter equal to one, ten, and seventeen,
respectively. Note that a delay parameter of one is too small, and stretches the attractor in
the x =y = z direction, as mentioned in Chapter I Also note that using a delay parameter
much greater than five begins to make the attractor unrecognizable. Recall that an
incorrectly chosen delay parameter will make calculations of invariants and short-term
prediction less accurate.

As stated in Chapter II, any embedding dimension greater than or equal-to the
minimal necessary embedding dimension will unfold the attractor. For the Lorenz time
series, we try using an embedding dimension of two to illustrate what happens when a
lower embedding dimension than the minimal necessary embedding dimension is used.
Figure 3.5 depicts the result: a reconstructed attractor which crosses itself Of course, our

"three dimensional" plots look similar (with crossings of the orbits), but that is the result
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of representing a three-dimensional 'phase portrait on a two-dimensional piece of paper.
Using an embedding dimension of one gives a plot of points crossing back and forth on a
straight line- which also is clearly not representative of the unfolded attractor which exists
ford >3.

In order to compare the result of reconstructing the phase pbortrait fora
low-dimensional, chaotic system to the result of doing the same on a
pseudo-randomly-generated time series, we used S-PLUS to generate a random sequence
of 1000 numbers. The Uniform (-15, 15) distribution in S-PLUS was used to generate the
sequence. Figure 3.6 shows the resulting phase portrait‘ whenusingd=2andt=1. In
Figure 3.7 we used d =3 and 1 =1, and in Figure 8 we used d =3 and 1 =2. None of
these phase portraits exhibit any order, so based on using this technique, we would

conclude that we do not have a time series from a low-dimensional, chaotic source.

B. ESTIMATING FRACTAL DIMENSION OF A HYPOTHESIZED
STRANGE ATTRACTOR IN A RECONSTRUCTED STATE SPACE
Although the technique of reconstructing the phase portrait provides a good start

in determining the presence of an attractor, we should go one step further and actually

estimate the fractal dimension of such an attractor (d,), given the data contained in the
time series. For instance, we may be able to detect "order" in the phase portraits, but it
may be difficult to determine whether or not we have unfolded the attractor, since it may
be difficult to determine whether the orbits are still crossing. We have already seen that we

will view "crossings" that may not actually exist when viewing a three-dimensional phase
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portrait in two dimensions. One benefit of estimating the fractal dimension of the
underlying attractor is that we can ensure we will know the exact minimal embedding
dimension: it wﬂl be the integer ceiling of d,. Also, using a popular "rule of thumb," if
we have an estimate of d, which is greater than five, then we might conclude that the time
series is not low-dimensional, (Brock, 1986).

Another benefit of estimating the fractal dimension of the attractor is based on the
following result given in Flandrin/Michel (1990). If the time series is the result of a
low-dimensional chaotic process, then the estimated dimension will converge to the true
attractor dimension once the correct embedding dimension is reached. If the time series is
the result of a stochastic (or high-dimensional, chaotic) process, then the estimated
dimension will continue to increase as the embedding dimeﬁsion increases, i.e., no such
convergence will occur.

In order to discuss the estimation of dimension, it is first necessary to note that
there are many diﬁ’érent definitions of dimension. Qur discussion on dimension is largely
summarized from Kugiumtzis et. al. 19945 and Strogatz (1994).  The first definition of
a ﬁ'actional dimension was presented in 1919 by Hausdorff, but it is in rather ébstract
form, and therefore not suitable for practical computation. Closely related to the
Hausdorff dimension is the box counting dimension. We imagine "covering" the attractor
with boxes, cubes, or hypercubes. Let M(/) be the number of hypercubes of a given

dimension m with side length  required to cover the attractor. Then from the scaling law
M) ~ P
the fractal (box counting) dimension D is derived to be

D, = llm —log[M(D)]
P oo legl
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A nice property of the box-counting dimension is that the dimensions of a point,
line, and area in two-dimensional space are the usual values of zero, one, and two,
respectively. Although efficient algorithms exist to calculate the box counting dimension
D,, it has been shbwn to have a number of practical limitations. For example, in the
definition of the box counting dimension, the distribution of points on the attractor was
not taken into consideration, only the geometrical structure of the attractor. This means
that all cubes contribute equally to the calculation of dimension even though the
frequencies with which they are visited by points on the attractor may be very different.

One way that the distribution of points on the attractor can be taken into account
is by use of the information dimension which is derived from the minimal information S(g)
needed to specify a point in a set, such as a hypercube, to an accuracy €. This information
is defined to be

M)
S(e) =~ é pilogp: ,
where p; is the probability of a point being in the ith set, defined as p, = p, / N where
N — oo and , is the number of points in the ith set. The information dimension D, of the
attractor is then defined by
Dy =lim72 .
The most popular measure of an attractor's dimension is the correlation dimension

D,, first defined by Grassberger and Procaccia. It can be considered as a simplification of

the information dimension and is given by

. log(uy)
D3 =1 lo, ::x ?
s>0 '°8
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- where ; is defined as before for a ball with center X,, instead of a cube; and <->_ denotes
the average over all points x, on the attractor. The correlation dimension also accounts
for the distribution of points on the attractor. To estimate D,, one plots log <p.>,

vs. log (¢). We should find an intermediate range of & over which the graph
approximates a straight line. The slope of this line is an estimate of D..

The general rule D, > D, > bl holds for the three different dimensions, with
equality occurring when the points are distributed uniformly over the attractor. The
usefulness of these dimensions depends on the effectiveness of the computational
algorithms used to compute them. In this thesis we will use the correlation dimension
because it is computationally one of the most robust.

In this thesis we do not write our own code to implement the Grassberger/
Procaccia algorithm. Instead, we rely on the software package Ché.os Dafa Analyzer
(Version 1.0, Physics Academic Software), which calculates the correlation dimension of
the underlying attractor according to this algorithm. One needs only to input a time Series
and specify an embedding dimension and delay parameter.

Before we present the results of the Chaos Data Analyzer (or CDA) on the Lorenz
data, one other important point about estimating dimension needs to be addressed. Ruelle
(1989) proved that the estimated correlation dimension will always be less than or equal to
2 log, N, where N is the number of points in the time series. In other words, ohly
dimension estimates which are significantly below 2 log, N should be regarded as

"evidence" that one has discovered an underlying low-dimensional chaotic attractor. Said
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another way, if we sought evidence of four-dimensional chaos, we estimate that we would
- need at least 1000 points in order to estimate the correlation dimension accurately.

We now illustrate the use of CDA on the Lorenz data . Tables 3.1, 3.2, and 3.3

contain the results for N = 500, 1000, 5000, respectively. In all three of these tables,

1,=0.0land T=5.

Table 3.1 Correlation Dimension Using 500 points (Lorenz)

Embedding Dimension Correlation Dimension
’ 1.00 1.03
2.00 1.79
3.00 1.83
4.00 1.96
5.00 2.01
6.00 2.03

Table 3.2 Correlation Dimension Using 1000 points (Lorenz)

Embedding Dimension Correlation Dimension
1.00 1.03
2.00 1.80
3.00 2.01
400 2.02
5.00 ‘ 2.04
6.00 2.04
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Table 3.3 Correlation Dimension Using 5000 points (Lorenz)

Embedding Dimension Correlation Dimension
1.00 1.03
2.00 1.84
3.00 : 2.04
4.00 2.05
5.00 _ 2.05
6.00 2.06

In each table, we note that the estimates for correlation dimension do indeed
converge once the minimal embedding dimension is reached. Also, we see that the
number of data points used affects the speed of convergence. For 500 data points, we
obtain a dimension estimate of less than two at embedding dimension three. We know that
this estimate is incorrect; Strogatz (1994) states that the Lorenz attractor has correlation
dimension of approximately 2.06. Strogatz's estimate is confirmed by our results when we
use at least 1000 data points. Further, the limiting dimension estimates are significantly
less than 2 log, (N for N = 500, 1000, and 5000. So based on this technique of estimating
the dimension of the underlying attractor, and keeping in mind Ruelle's result, we conclude
that our Lorenz data is indeed from a low-dimensional, chaotic source.

Next, to illustrate what will happen when using a p@udo-randomly-generated time
series, we use the 1000 point time series we generated in S-PLUS. Table 3.4 shows the

result of calculating the correlation dimension of this time series.
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Table 3.4 Correlation Dimension Using 1000 Points (Pseudo-Random)

Embedding Dimension Correlation Dimension
1.00 1.03
2.00 2.05
3.00 2.99
4.00 3.80
5.00 4.54
6.00 5.12
7.00 ' 5.72
8.00 6.27
9.00 6.69

10.00 7.07

In contrast to the Lorenz data, we see that the estimated dimension increases as
the embedding dimension is increased, and the estimates do not appear to converge.
Keeping in mind that we are actually using a pseudo-randomly generated time series
(which most likely is the result of a high-dimensional dynamical system), it may be that the
estimated dimensions will eventually taper off at some value. CDA only allows us to
increase the embedding dimension to ten, though, so for this time series we are not able to
observe whether or not the dimension estimates eventually converge. For a truly
"random" time series, no such tapering off will ever occur. True "noise" always seeks to

be unfolded in higher and higher dimensions, because the unfolding never takes place.

C. ESTIMATING LYAPUNOV EXPONENTS

Taking our discussion in Chapter II as an introduction to the subject of Lyapunov
exponents, we proceed from there and emphasize that an important signature of
low-dimensional chaos in a time series is the exfstence of a positive Lyapunov exponent.
Given a time series {s(n)}, how do we go about estimating the largest Lyapunov exponent
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associated with the underlying dynamical system? As stated in Chapter II, if we knew the
underlying system of equations which generated the time series, one might be able to use
straight-forward, analytical methods to estimate the complete spectrum of Lyapunov
exponents (Strogatz, 1996). However, not knowing the underlying system necessitates a
computational method for estimation.

Many authors have addressed this topic in the literature, and the most commonly
used method/algorithm is the one presented by Wolf et. al. (1985). Their technique for
estimating the non-negative Lyapunov exponents from a finite amount of experimental
data involves examining the divergence of orbits in the space of the reconstructed
attractor. In order to estimate the largest Lyapunov exponent, called A,, we monitor the
long-term evolution of a single pair of nearby initial conditions. Note that although the
attractor was actually reconstructed from a single trajectory, it can provide pairs of points
that may be considered to lie on different trajectories. |

To estimate the largest positive Lyapunov exponent of a time series {s(n)}, we
first construct the state space using an appropriate delay parameter t and embedding
dimension d;. After the state vectors y(t) have beén created, we locate the nearest
neighbor (using Euclidean distance) to the initial point ¥(t,) and denote the distance
between these two points as L(t,). At a later time t,, the initial length will have evolved to
length L'(t,). The length element is propagated through the attractor for a time short
enough so that only small scale attractor structure is likely to be examined. If the
evolution time is too large, we may see L' shrink as the two trajectories which define it

pass through a folding region of the attractor. This would lead to an underestimation of

38




A,. We then look for a new data point that satisfies two criteria reasonably well: its
separation L(t,) from the evolved original point is small, and the angular separation
between the evolved and replacement elements is small. If an adequate replacement point
cannot be found, we retain the points first used. This procedure is repeated until the
original trajectory has traversed the entire data file, at which point we estimate the largest

positive Lyapunov exponent A, as

A 1 M L'(ty)

= bt =1 02Ty » -

where M is the total number of replacement steps. The time step (t,,, - t,) is held
constant. This algorithm is adversely affected by noisy data, too few data points, and
inappropriate choices for d and the delay parameter 7.

In this thesis, we again use the Chaos Data Analyzer to implement the algorithm,
noting that it calculates the largest Lyapunov exponent in bits of information per data
sample. Tables 3.5, 3.6, ‘and 3.7 show the result of using CDA on the Lorenz time series

with N = 500, 1000, 5000, respectively, and with Tt = 5.

Table 3.5 Lyapunov-Exponent Using 500 Points (Lorenz)

Embedding Dimension Largest Lyapunov Exponent
1.00 1.23
2.00 0.14
3.00 0.12
4.00 “ 0.11
5.00 0.09
6.00 0.09
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Table 3.6 Lyapunov Exponent Using 1000 Points (Lorenz)

Embedding Dimension Largest Lyapunov Exponent
1.00 1.18
2.00 0.14
3.00 0.10
4.00 0.10
5.00 0.09
6.00 0.09

Table 3.7 Lyapunov Exponent Using 5000 Points (Lorenz)

Embedding Dimension Largest Lyapunov Exponent
1.00 1.18
2.00 0.09
3.00 0.07
4.00 0.07
5.00 ' 0.07
6.00 0.07

From these results, we would conclude that the largest Lyapunov exponent is
approximately 0.07, and we would conclude that the time series is chaotic, since this
estimate is positive. As with estimating the correlation dimension, we see that a greater
number of data points allows for faster convergence to the "true" estimate, once the
minimal embedding dimension is reached. This estimate of A, corresponds to known
results for the largest Lyapunov exponent of the Lorenz system. We also note that the
estimation of invariants, such as Lyapunov exponents, gives another way to determine the
correct minimal embedding dimension. It will be the embedding dimension at which we
have convergence of estimates, provided we are using enough data points.

For the pseudo-randomly generated time series, Table 3.8 shows the result of

using CDA to calculate the largest Lyapunov exponent of the S-PLUS pseudo-random
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data. The most interesting aspect of this table is that there does not seem to be an

embedding dimension at which convergence occurs, as with the Lorenz time series. Also,

with a truly random time series, we would expect to see an estimated Lyapunov exponent

of zero, indicating that on the average, distance between initially nearby orbits neither

grows nor decays. What should actually happen is that the orbit separation distance

should sometimes grow and sometimes decay, at random. The CDA estimates for the

largest Lyapunov exponent do get close to zero as the embedding dimension is increased,

but perhaps do not actually reach zero because of the "pseudo” random nature of the time

series. Possibly, we are again observing the fact that a high-dimensional, chaotic

dynamical system was used to generate this time series.

Table 3.8 Lyapunov Exponent Using 1000 Points (Pseudo-Random)

Embedding Dimension Largest Lyapunov Exponent
1.00 1.39
2.00 0.80
3.00 0.52
4.00 0.39
5.00 0.07
6.00 0.03
7.00 0.02
8.00 0.01
9.00 0.02
10.00 0.03
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D. PREDICTOR ERROR

The last criterion we will discuss for determining the existence of low-dimensional
chaos is predictor error. Only a very general overview is provided here, since short-term
prediction of a time series is the subject of the next chapter. What we intend to show,
though, is that short-term prediction will be possible.for a chaotic time series and not for a
randomly-generated time series (Casdagli et. al., 1992).

First, we need a few definitions. Let {s(n)} be the time series, with
n=1,..,N. Let T be the prediction interval, i.e., how many time steps ahead we wish to
predict. We call s (N + T) the true value of the time series at step N+ T, and we call
Sped(N + T) the predicted value. The predictor error measures how far apart these two
values are. fredictor error, and how one determines s, (N + T) will be explained in the

next chapter.

For now, though, it is sufficient to note that if we have a chaotic time series, we
should expect to see predictor error starting out small for a small prediction interval, and
increasing as the prediction interval increases. No such relationship between predictor
error and prediction interval will exist for a randomly-generated time series because the
predictor error will always be large.

For a chaotic system and for a given short prediction interval, we should also see
predictor errors decrease to a value near zero as d is increased to the correct minimal
embedding dimension d;, then increase as d is increased beyond d;. This will not occur

for a randomly-generated time series, because the predictor error will be large no matter
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what embedding dimension is used (Casdagli, 1989). These results will be illustrated for

the Lorenz time series and for the pseudo-randomly generated time series in Chapter IV.
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- Reconstructed Phase Portrait

n=2000, delay=5

Figure 3.1. Reconstructed Attractor (Lorenz)

Reconstructed Phase Portrait
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Figure 3.2. Reconstructed Attractor (Lorenz)
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Reconstructed Phase Portrait

n=2000, delay=10

Figure 3.3. Reconstructed Attractor (Lorenz)

Reconstructed Phase Portrait
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n=2000, delay = 17

Figure 3.4. Reconstructed Attractor (Lorenz)
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Reconstructed Phase Portrait, Randomly Generated Data Set ‘ i
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Figure 3.5. Reconstructed Attractor (Pseudo-Random)

Reconstructed Phase Portrait, Randomly Generated Data Set

delay=1

Figure 3.6. Reconstructed Attractor (Pseudo-Random)
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Reconstructed Phase Portrait, Randomly Generated Data Set

delay=2

Figure 3.7. Reconstructed Attractor (Pseudo-Random)
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IV. SHORT-TERM PREDICTION OF CHAOTIC TIME SERIES

A. GLOBAL METHODS

We have claimed that short term prediction can be accomplished on a chaotic time
series {s(n)}, n=1, 2,..., N; in fact, we mentioned that this is a feature of chaotic time
- series which distinguishes it from a randomly-generated one. Prediction is called the
“inverse problem" in dynamical systems. That is, given a sequence of iterates from a time

series, we want to construct a nonlinear map that gives rise to them. Such a map would

be a candidate for a predictive model. The consideration of a nonlinear map is essential,
since linear maps do not produce chaotic time series.

Several methods exist for predicting time series. The primary references for this
section are Casdagli (1989) and Casdagli et. al. (1992). The methods fall into the
categories of global function representation and local function approximation. The
following is a list of functions that have been employed in global function representation
problems.

- Polynomials: These have the advantage that their parameters can be determined
by a linear least squares algorithm, which is fast and gives a unique solution. However,
polynomials have the disadvantage that they blow up as their argument approaches infinity
and consequently; they usually do not extrapolate well outside the domain of the data set.
Furthermore, they generally behave poorly under iteration.

- Rationaf Functions: These are ratios of polynomials of the same order, and have

the advantage that they approach a constant as the argument approaches infinity.
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- Wavelets are a localized generalization of Fourier ‘series. Their most immediate
use is as a means of signal decomposition and hence, state space reconstruction. They
present an interesting possibility for function representation within the state space.

- Neural nets are currently very popular. They represent the "connectionist” or
"brain-style computation” and are frequently used in "pattern recognition" types of
problems. Their use in prediction of time series is in the attempted pattern recognition of
past iterates of the time series.

- Radial basis functions are of the form

S8) =Za,0(ls-sil),
where @ is an arbitrary function, s is the point being predicted from, s, is the ith value of
the time series, and ||s - s,|| is the distance from s to the ith data point. This functional
form has the advantage that the least squares solution of a, is a linear problem. Radial
basis functions are widely used in the fields of computer graphics and vision and have also
been used by several authors in time series predictio_n. (Gershenfeld/Weigend, 1994)

Global function representations have the appeal of representing the entire data set
with one form, but they have the disadvantage that it may be difficult or impossible to
model the intricate structure of a strange attractor with one global function representation.
Local function approximation extends the global function representation methods by
weighting the contributions of the points in a data set in proportion to their nearness to the
point being predicted from, instead of attempting to take into account the entire data set
when making a prediction. Another benefit of local approximation is that there are a priori

scaling laws available for the accuracy of approximation.
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B. LOCAL FITTING

There are several ways to accomplish local approximation. One is kernel density
estimation, which is a method for estimating probability density functions from continuous
data. The basic idea is to assign to each point an "influence function" or kernel ® that
decays with distance, giving an estimator of the form

A = 0(ls-sl),
where ||']| denotes a norm. The kernel @ may be a step function or a monotonically
decreasing function, such as an exponential. Kernel density estimation is related to radial
basis functions, the difference being that for radial basis functions the contribution of the
kernel from each point depends on s and is computed for each s based on least squares,
whereas for kernel density estimation, the kerneis are ususally fixed or are changed in a
uniform manner; for example, for an exponential kernel the decay parameter may be
adjusted.

The second way to do local approximation is by Jocal fitting. This approach
allows one to build a globally nonlinear model while fitting only a few parameters in each .
local patch.  Local fitting is generally quick and accurate, but it has the disadvantage that
the approximations are discontinuous. Also, depending on the structure of the underlying
attractor, this method may require large amounts of data in order to adequately sample the
subregions. Continuity may be achieved by weighted local fitting or by choosing the
neighboring points for the local approximation so that they form appropriate simplices.
Casdagli (1989) points out that in some cases one may want to select parameters using

more robust criteria than least squares. Local function approximation is similar to Tong's
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threshold autoregressive models. However, Tong usually constructs two or three different
linear models depending on the state of the system, while local function approximation
requires building a different model for each state (Tong, 1990).

In this thesis, we demonstrate the method of local fitting, using the ideas contained
in Farmer/Sidorowich (1987) and Casdagli et. al. (1992) as our guide. The first step,
which we have already discussed and demonstrated, is to embed the time series {s(n)},

n=1,2,.N, ina state space with embedding dimension d, and delay parameter 1 chosen
as previously discussed. Next, we assume a functional relationship betweén the current
state vector y(n) and the future state y(n+T), where T is the number of steps ahead one
wants to predict. If this functional relationship is y(n+T)=f.(y(n)), then we want to find a
predictor F; which approximates f;. As mentioned earlier, if the time series is chaotic, £ is
necessarily nonlinear.

To predict s(n+T), we first define a metric |[-|| on the state space, and find the k
nearest neighbors of y(n), i.e. the k states y(n') with n' < n that minimize [ly(m)-y(n)|. We
can then construct a local predictor, regarding each neighbor y(n') as a d.-dimensional
point in the domain and s(n'+T) as the corresponding point in the range. A common
approach for constructing this local predictor is to fit a linear polynomial to the pairs
(y('), x(n'+T)). Note that the range is a scalar, and is not d;-dimensional like the domain.
For some purposes, it may be desirable to let the range be d;-dimensional as well. When
k= d +1 this scheme is equivalent to linear interpolation, but Farmer/Sidorowich (1987)
propose that a choice of k > d +1 ensures greater stability of the solution. Of course, one

may want to fit a higher-order polynomial for the local map, but in this thesis we shall only
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demonstraté the use of the linear map. Figure 4.1, taken from Sidorowich (1987, p. 122),
graphically depicts this idea. In the figure, the current state y(t) and the unknown future
state y(t+T) are represented by open circles and the black dots inside the dashed circle are
the neighbors of y(t). To make a prediction, a local chart is fit with the neighbors in its
domain and the states they evolve into a time T later in its range.

We will also need some measure of how accurate our predictions are. We use the
normalized mean-square-error, which will be further denoted as E. In order to test our
predictions we will need to treat part of the data we have as the training data set (the part
we assume we know) and the other part as the test data set, against which we plan to test
our predictions. The normalized error E is given by

m

)y (strue()—Spred (]))2

J=1
E=L
Z (strue(])“smean)z

=

b

where s_.(j) is the true value of the time series, épmd(j) is the computed predicted value,
Snen 1S the average of the true values over the range of predictions, and m is the number
of data points in the test data set. This formula assumes the calculation of predictions
which are compared to the (assumed known) time series values. Predictions are perfect if
E =0, while E = 1 indicates that the accuracy of predictions is no better than a constant
predictor equal to the average of previous time series values. A value for E which is

greater than one indicates even worse performance then the average of previous time

series values.
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As mentioned earlier, an advantage of local approximation is the existence of 2
priori scaling laws. Provided that the correct embedding dimension has been chosen and
that the time series is relatively noise-free, Farmer/Sidorowich derive the following as an
error estimate:

E »~ C et Amax T\@+1)/D 4.1
where m is the order of the approximating polynomial used, C is a constant, A___is the
largest Lyapunov exponent when m = 0, and equals the metric entropy otherwise. The
metric entropy is equal to the sum of the positive Lyapunov exponents. From equation
(4.1) we are able to observe that the error decreases as N increases, and increases when

A

max:

,m, D, and T incréase. Farmer/Sidorowich (1987) claim that this prediction scheme
can be quitc; effective on low- to moderate-dimensionality time series. We note that other
interesting ideas about the performance of a pre&ictor exist in the literature. For example,
May/Sugihara (1990) compute the traditional linear correlation coefficient of observed and
predicted values. A correlation coefficient of one indicates perfect predictions while a
value close to zero indicates no correlation between observed and predicted values.
Kuguimtzis et. al. (1994) propose a predictor which, instead of minimizing E, would
reproduce dynamic invariants such as Lyapunov exponents and attractor dimension in the
original data.

Another important decision when making predictions for more than one time step
ahead is whether they should be constructed directly or iteratively. A direct prediction
would be accomplished by making one long term prediction over the full interval T. In

contrast, an iterative prediction would be accomplished by splitting the long interval T into
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smaller increments, and then concatenating short term forecasts to produce a long term
prediction. Several authors argue that iterative predictors are generally more stable and
accurate than direct predictors. In fact, Farmer proposes that with clean data the error E
scales like

E ~ Ce*IN®/P,
The extra factor of €™ has disappeared, indicating that significant improvement is
possible by increasing the degree of the approximating polynomial (Sidorowich, 1992).

The MATLAB code we wrote to accomplish the local fitting is given in Appendix
C. We include a code which accomplishes a one-step prediction and a code which
accomplishes an iterative, multi-step prediction. Both of these codes assume an
embedding dimension of three, but they are (and were) easﬂy changed to produce results
using different embedding dimensions. Both codes allow different choices of k (number of
nearest neighbors), N (number of data points in the training data set), 7 (delay), and the
multi-step predictioﬁ code allows for different choices of T‘ (prediction interval).

For the Lorenz time series, we sta.rted by doing the one-stép predictions while
vé.ryin;; d, 7, k, and N. We let d take on the values 2, 3, 4, 5; 1 take on the v'alues
1,2,..., 10; ktake on the values 2, 3,...,10; and N take on the values 500, 1000, 2000,
3000, 4000, 5000, 6000, 7000, 8000, 9000. For each of the 3600 different possible
combinations, we calculated the absolute error |s, (N+1) - Syed(NF1)|. The resulting
tables are too numerous to present here; instead we give a brief synopsis of what we

discovered.
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Of the embedding dimensions used, the value of three corresponded to the most
accurate predictions. While embedding dimensions of four and five gave more accurate
predictions than did embedding dimension two, they gave less accurate predictions than
did embedding dimension three. This seemed to make sense to us, given that we had
already determined that the appropriate minimal embedding dimension d, was three. This
also agreed with Abarbanel's claim that an embedding dimension used for predictive
purposes should be high enough to unfold the attractor, but no higher (Abarbanel, 1996).

Of the delay parameters 7 used, the value of one seemed to result in the most
accurate predicions. Predictions got steadily worse as the delay was increased. We were
at first surprised by this result, as we were expecting a delay of five to correspond to the
most accurate predicitions, since that was the optimal delay we found using the technique
of average mutual information. However, we realized that using smaller delays would
result in smaller absolute errors, but would not hecessarily result in smaller relative errors
(relative to the delay, or time step) being used. We later saw the result we were expecting
when computing iterative predictions.

As for number of data points used in the training set, we saw improved predictions
when the number of data points was increased. This makes sense, since we are, in effect,
better populating the attractor when we use more data points. However, there was no
obvious best choice for the number of nearest neighbors to use, except that two was too
few and seven or more was too many. Farmer/Sidorowich propose using k > d + 1, for
stability. We decided to use five nearest neighbors when computing the iterative

predictions.
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Next, we attempted predictions 200 steps ahead, iteratively, using 1000 data points

in the training data set, five nearest neighbors, and an embedding dimension of three.

Again we let the delay barameter take on the values 1, 2,..., 10. For each choice of T, we
calculated the prediction step at which the normalized error E reached the value of one.
We call this value of the prediction step the prediction horizon. Table 4.1 depicts the result
of these calculations. A delay pafameter of five corresponds to the largest prediction

horizon, a result which agrees with our previous determination of the delay parameter.

Table 4.1 Iterative (100 Step) Predictions With Lorenz Data

Delay Parameter Prediction Horizon
1 ' 30
2 ' 49
3 54
4 84
5 110
6 90
7 75
8 50
9 41
10 35

To further illustrate the iterative prediction, Figure 4.2 depicts the actual time
series values vs. the predictions for a delay of five. As can be seen by the graph,
predictions break down after about 100 steps. But, more importantly, we seé that
short-term predictions are, indeed, possible for a low-dimensional chaotic time series. In
contrast, we display in Figure 4.3 the result of attempting to predict the S-PLUS

pseudo-random time series, using an embedding dimension of three. Similar graphs were

57




obtained for increased embedding dimensions. The prediction horizon was either one or
two for all combinations of d and 7 used.

One issue not yet addressed is how predictions, attractor reconstruction, and
invariant estimation changes as a result of noise in the time series. To illustrate how
prediction can fail on a noisy time series, we took the Lorenz time series and added
Uniform (-1,1) noise to it. We can see the effect of the noise in the phase portrait in
Figure 4.4. This noise will affect the accuracy of invariant estimations and predictions.
The result of attempting to predict this noisy time series is displayed in Figufe 4.5. With
the noise added, we are now not able to predict accurately for even a few steps.

Tables 4.2 and 4.3 contain the results of estimating correlation dimension and
largest Lyapunov exponent, respectively. We seem to have identified a positive Lyapunov
exponent, but it is much closer to zero and our estimates do not converge. Also, the

estimation of correlation dimension is significantly inaccurate.

Table 4.2 Correlation Dimension using using 5000 points (Noisy Lorenz)
Embedding Dimension Correlation Dimension

1 1.03
2.04
2.87
3.58
4.25
4.67
5.16
5.11
5.43
571
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Table 4.3 Lyapunov Exponent using using 5000 points (Noisy Lorenz)

Embedding Dimension Largest Lyapunov Exponent
1 . 1.73
2 0.09
3 0.07
4 0.04
5 0.04
6 0.02
7 0.01
8 0.03
9 0.02
10 0.03

The issue of noise has only recently been treated in the literature, and there is
considerable room for further development. Farmer and Sidorowich have done much of
the work in this area. They focus on methods such as nonlinear smoothing to separate the

"noise" from the "signal" in deterministic chaos.
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Figure 4.1. Theory of Local Fitting
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Figure 4.2. Local Fitting Predictions (Lorenz)
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Figure 4.3. Local Fitting Predictions (Pseudo-Random)

Reconstructed Phase Portrait

delay=5, with noise added

Figure 4.4. Reconstructed Attractor (Lorenz With Noise)
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Figure 4.5. Local Fitting Predictions (Lorenz With Noise)
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V. DEMONSTRATION OF TECHNIQUES ON DATA SETS

A. FAR-INFRARED LASER DATA

Having explained the theory behind state space reconstruction, techniques for
detecting low-dimensional chaos, and prediction, we now intend to demonstrate these
methods on some time series to illustrate some of their strengths and Weaknesses.

The first time series that we consider is discussed in Gershenfeld/Weigend (1994),
and was used for a time series competition held by the Santa Fe Institute (SFI) in 1992,
The time series, referred to in Gershenfeld/Weigend (1994) as Data Set A, arises from a
physics laboratory experiment which provided very clean data: 1000 points measuring
fluctuations in a far-infrared laser which are approximately described by three coupled
nonlinear ordinary differential equations. Attributes of this data set, as prescribed by SFI,
are stationary dynamics, low-dimensional, low-noise, and short.

Before reconstructing the state space, we use our S-PLUS code (in Appendix A)
to determine the first minimum of the average mutual information function on this time
series. The result is shown in Figure 5.1. | It indicates that we need to use a delay
parameter T of two. Next, we determine the minimal necessary embedding dimension d,
using the MATLAB code (in Appendix B). Figure 5.2 shows the result of using a
threshold of ten and 1000 points; we need an embedding dimension of three. Having the
tools now to reconstruct the state space, we attempt to detect the presence of
low-dimensional chaos, using the methods presented in Chapter III. First, we reconstruct

the phase portrait. The result of using T and d;; as chosen above is shown in Figures 5.3,
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5.4,5.5, and 5.6. These figures are the result of using delay parameters equal to one, two,
three, and four, respectively. We note that, judging by the phase portraits, we would
decide to use a delay of one, since it corresponds to the most "structure" in phase space.
This does not agree with the first minimum of the average mutual information function,
which is two. We disregard this discrepancy for now, noting that pérhaps the "breaks" we
| chose for the histogram may have something to do with this discrepancy. A picture is
worth a thousand computations, so we decide on using T = 1. Increasing t only distorts
the phase space portrait.

We next calculate the correlation dimension of the underlying attractor, using
Chaos Data Analyzer. Table 5.1 shows the result. We see that the correlation dimension
estimates converge (to one decimal place) to 2.1. We suspect that we may need more

than 1000 data points in order to get convergence to two decimal places.

Table 5.1 Correlation Dimension Using 1000 Points (Data Set A)
Embedding Dimension Correlation Dimension

1 3.88
1.82
2.05
2.14
2.09
2.12

DN A WiN

Next, we estimate the largest positive Lyapunov exponent using CDA. The results
are contained in Table 5.2. We see that Lyapunov exponent estimates converge to 0.07.

So far, it appears that we have detected low-dimensional chaos in this time series.
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Table 5.2 Lyapunov Exponent Using 1000 Points (Data Set A)
Embedding Dimension Largest Lyapunov Exponent

1 0.95
0.13
0.11
0.08
0.07
0.07

Al h WM

We now attempt to predict, using our MATLAB code (in Appendix C), by fitting a
local linear map to the k nearest neighbors of the point from which the prediction is made.
Figure 5.7 shows the result of using embedding dimension of three, delay parameter of
one, and five nearest neighbors. We see that we are able to predict reasonably well until
time step 22. .This is where the normalized error E approaches one. For comparison, we
show in Figure 5.8 the result of using a delay of two, and all other paraméters unchanged.
Predictions are not too bad, but E approaches one at time step 15. Recalling our earlier
conflict of optimal delay of either one or two, we now decide that T = 1 corresponds to
the optimal delay for this time series.

We conclude that we have a time series which has arisen from a low-dimensional,
chaotic source. We have found evidence of a low-dimensional underlying attractor, both
graphically and computationally. We have detected a positive Lyapunov exponent, and

we have been able to accomplish short-term prediction for this time series.

B. VOLUME-PRESERVING CHAOTIC MAP

Our next example is taken from a pre-print of a paper written by Carroll and
Pecora (1997). It is an example of a hyperchaotic, volume-preserving map. The term
hyperchaotic indicates the presence of more than one positive Lyapunov exponent; there
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are two in the case of the map we will use. A volume-preserving map does not have an
attractor, i.e., the chaotic motion of the trajectories may cover a large part of the phase
space. A volume-preserving map exhibits expanding in some directions and contracting in
other directions at the same rates, so that the volume of a ball of initial conditions remains
unchanged through time. This is in direct contrast to the Lorenz system of equations,
which is dissipatave. This means that the volume of a ball of initial conditions approaches
zero as time progresses. In fact, volumes in phase space shrink exponentially fast in the
Lorenz system. The map studied by Carroll and Pecora has applications in private and
secure communication systems, where two chaotic time series with no attractor is a
desired entity.

Recall that chaotic motion involves the "stretching" and "folding" of orbits. The
"folding" in the volume-preserving map chaotic map is accomplished by a modulus shift,
while the "stretching" is accomplished by a linear transformation, i.e., by multiplying an
initial vector by a compatible matrix. Carroll and Pecora give the following as an example

of a hyperchaotic, volume preserving map:

{Xnr1 =—(4/3)x, +2,}mod 2 — 4, (5.1)
Ora =(1/3)yn +2,3mod 2 - 4, (5.2)
{Zn1 =X, +ynymod 2 -4, (5.3)

where { } mod 2 - 4 means take the result modulus + 2 and then subtract 4. In their
paper, they determine the Lyapunov exponents analytically. They are 0.683, 0.300, and
-0.986. They note that the exponents do not add exactly to zero because of round-off
error.

We generated 4,000 values of the x variable of this dynamical system to comprise

our time series. Using the technique of average mutual information, we determine that the
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optimal value for 7 is two. This result is displayed in Figure 5.9. Using global false nearest
neighbors, we determine that the minimal embedding dimension d, is eight. This result is
displayed in Figure 5.10. Figures 5.11 through 5.13 show the resulting phase portraits in
two dimensions, for delays of one, five, and ten, respectively. Noteworthy is the fact that
we saw no evidence of an attractor for any of these delays; however, the phase portrait
does not cover the entire cube represented by -6 <y, <-2, -6 <y, <-2, -6 <y, <-2. This
seems to indicate that the data is deterministic, although we cannot detect the presence of
an attractor.

Next, we calculated correlation dimension using CDA. The results are contained
in Table 5.3. The estimates do not converge; consequently, it would be difficult to
determine thus far whether chaos or a stochastic process is representing itself in the time

series.

Table 5.3 Correlation Dimension (Volume Preserving Map)

Embedding Dimension . Correlation Dimension
1 - 1.02
2 2.03
3 2.78
4 2.76
5 2.79
6 3.31
7 3.61
8 4.89
9 5.26
10 6.25
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We hext use CDA to estimate the most positive Lyapunov exponent. This result is
located in Table 5.4. The estimate agreed with Carroll/Pecora's estimate for the largest
positive Lyapunov exponent. This result is noteworthy, since a positive Lyapunov
exponent indicates that a chaotic process is being represented in the time series.
Unfortunately, though, CDA only allows us to estimate the largest positive Lyapunov
exponent; so we are unable to experimentally confirm the presence of a second positive

Lyapunov exponent.

Table 5.4 Lyapunov Exponent (Volume Preserving Map)

Embedding Dimension Largest Lyapunov Exponent
1 1.49
2 1.29
3 0.87
4 0.82
5 0.75
6 0.73
7 0.71
8 0.69
9 0.68

10 0.69

Finally, we attempt short-term prediction. After analyzing the result of using
different values for nearest neighbors used on the one-step predictions, we decide that
using four nearest neighbors gives the most accurate results. We then performed a
ten-step, iterative prediction. The result is shown is Figure 5.14. The prediction for the
first step is nearly perfect, but subsequent predictions noticeably fail around step five,

when E reaches the value of one.
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So what would we conclude from the information we have gathered from this time
series? This map has provided us with a good example of éomething between
low-dimensional chaos (like the Lorenz time series) and a stochastic process (like the
pseudo-random time series). The absence of an attractor explains the mostly
unenlightening phase space portraits and the lack of convergence of correlation dimension
estimates. However, the presencé of at least one Lyapunov exponent indicates that the
time series arises from a chaotic source. Finally, although prediction was not nearly as
successful as it was with the Lorenz time series, we were able to predict a few iterates
fairly well; in fact, the first prediction was near perfect. So from all this we would
conclude, if we had no knowledge of the system from which this time series came, that we
had a time series which arose from a deterministic, chaotic, but perhaps high-dimensional,
source. Although we would not conclude that we have detected low-dimensional chaos,

we certainly have detected chaos.

C. STAGGERED TIME SERIES

As our last example, we take two known low-dimensional, chaotic time series and
stagger them. We take as one time series 3000 points of the familiar Lorenz time series
we have been discussing. Recall that this time series had an optimal delay value of five.
To obtain the other time series we introduce the Rossler system of equations, which is

another example of a low-dimensional, chaotic system. The equations are:

X=-y-z, (5.4)
y=x+ay, (5.5)
z=b+2z(x-c), (5.6)

where a, b, and ¢ are parameters. This system has a strange attractor fora=0.2,b=0.2,
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and ¢ = 5.7 (Strogatz, 1994). This strange attractor, like the Lorenz attractor, has fractal
dimension between two and three. We obtained a 3000-point time series from this system
by extracting values of the x variable, using 7, = 0.01. We note that a delay of 30
corresponds to the most accurate reconstruction of the Rossler attractor, seen in Figure
5.15. However, the time series we used for the construction of the staggered time series
was the Rossler system variable {x(t) }', with a delay of one.

To obtain the staggered time series, we merely staggered components from each of
the above two time series, i.e. took the first entry the of Lorenz series, then.took the first
entry of the Rossler series, took the second component of the Lorenz series , etc. We can
represent this time series as {L1, R1, L2, R2, ....L3000, R3000}, where the L points
represent the Lorenz data and the R points represent the Rossler data.

We pause to address the reason for staggering the two time series, using a delay of
one on each time series. In other words, why did we not take the Lorenz data (with delay
of five already encorporated) and the Rossler data (with delay of 30 already encorporated)
and stagger these two? We wanted to start with the original (untested, with respect to
choice of delay) data and test for optimal delay once the staggered time series is created.

We next used average mutual information to determine the optimal delay, and the
result was that the optimal delay was two. However, a delay of two corresponds to only
using the Rossler points R1, R2, etc. We must not accept this recommendation, since it
defeats the purpose of staggering the two time series. In fact, the use of any even delay is
unacceptable. However, we are pleased that the algorithm for average mutual information

apears to have correctly identified the fact that a delay of two corresponded to the most
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structure in the time series. A priori, we may have thought that this time series would
have stumped the algorithm, but we see that it seems fairly robust. We also used aQerage
mutual information to calculate the optimal delay on the time series
{R1, L1, R2,..,R3000, L3000}, and the result was still two. This means that, by the
nature of the order of the components in the time series, it identified structure in the
Lorenz points. We postpone the choice of delay, for now, and calculate the necessary
embedding dimension d; using global false nearest neighbors and using a delay of one.
The result was that d; = 4. |

The resulting phase portrait of the staggered time series is shown in Figure 5.16,
using a delay of one. This plot presents a very interesting sight. One may wonder why we
do not see the Rossler attractor and the Lorenz attractor sﬁperimposed on the same plot.
The reason is as follows. The reconstructed phase portrait of the Lorenz attractor
consisted of a plot of the state space "points" [L1, L2, L3}, [L2, L3, L4], [L3, L4, L5],
etc. The reconstructed phase portrait of the Rossler attractor consisted of a plot of the
- state space points [R1, R2, R3], [R2, R3, R4], [R3, R4, R5], etc. However, the
reconstructed phase portrait of the staggered "attractor" consists of a plot of the state
space points [L1, R1, L2], [R1, L2, R2], [L2, R2, L3], etc. Therefore the staggered
"attractor" does not consist of the union of the Rossler state space points and the Lorenz
state space points. One may also wonder why, then, we see any structure at all, let alone
structure as delicate as appears in Figure 5.16. We do not have an answer to this

question. Perhaps the topic of staggered time series could be an area for further research.
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We proceed by calculating the correlation dimension; the results are in Table 5.5.
Although we do not have convergent estimates, the results seem to indicate a fractal
dimension between three and four. This confirms the choice of four as the minimal

embedding dimension.

Table 5.5 Correlation Dimension Using 6000 points (Staggered)

Embedding Dimension Correlation Dimension
1 1.02
2 - 205
3 2.51
4 2.72
5 2.92
6 3.12
7 3.25
8 331
9 3.38
10 3.45

In Table 5.6 we display the Lyapunov exponent calculation. We seem to have
evidence of a largest positive Lyapunov exponent approximately equal to 0.08. It seems
then that this structure we discovered exhibits sensitive dependence on initial conditions,

with the distance between two initially nearby points growing exponentially with time.
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Table 5.6 Lyapunov Exponent Using 6000 points (Staggered)

Embedding Dimension Largest Lyapunov Exponent
1 1.23
2 0.92
3 0.36
4 0.12
5 0.11
6 0.09
7 0.08
8 0.09
9 0.08

10 0.08

Finally, we attempt prediction using embedding dimension four. Figure 5.17
shows the result of using a delay of one, embedding dimension of four, ten nearest
neighbors, 5000 data points, and predicting 15 steps. We determined the number of
nearest neighbors to use by varying this parameter from five to fifteen and calculating a
one-step prediction, as we did with the Lorenz time series. The most accurate one-step
prediction corresponded to using ten nearest neighbors. By step 15, the predictions (at
least the ones corresponding to the Rossler points) are significantly inaccurate. An
interesﬁng thing to note is that predictions corresponding to the Rossler points fail quicker
than do the predictions corresponding to the Lorenz points.

Summarizing our results: we found structure in the phase space portraits; the
correlation dimension estimates and global false nearest neighbors suggested a fractal
dimension of between three and four; we determined the existence of a positive Lyapunov
exponent, and we were able to accomplish short-term prediction. In other words, we have

all the signs of a low-dimensional, chaotic time series. However, it would be errant to
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conclude that this time series arose from a single dynamical source, i.e. a single set of
“equations, since we know that we staggered two time series which had no dependence on
each other. We believe that this time series, at a minimum, presents an interesting problem

possibly deserving of further research.
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Figure 5.1. Average Mutual Information in S-PLUS (Data Set A)
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Reconstructed Phase Portrait, Data Set A
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Figure 5.3. Reconstructed Attractor (Data Set A)
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Figure 5.4. Reconstructed Attractor (Data Set A)
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Reconstructed Phase Portrait, Data Set A
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Figure 5.5. Reconstructed Attractor (Data Set A)
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Figure 5.6. Reconstructed Attractor (Data Set A)
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Figure 5.7. Local Fitting Predictions (Data Set A)
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Figure 5.8. Local Fitting Predictions (Data Set A)
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Average Mutual Information for Volume Preserving Map
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Figure 5.9. Average Mutual Information in S-PLUS (Volume Preserving Map)
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Figure 5.10. Global False Nearest Neighbors in MATLAB (Volume Preserving Map)
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Reconstructed Phase Portrait
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‘Figure 5.11. Reconstructed Attractor (Volume Preserving Map)
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Figure 5.12. Reconstructed Attractor (Volume Preserving Map)
80




Reconstructed Phase Portrait
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Figure 5.13. Reconstructed Attractor (Volume Preserving Map)
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Figure 5.15. Reconstructed Attractor (Rossler)
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Figure 5.16. Reconstructed Attractor (Staggered)
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VI. CONCLUSIONS

In this thesis we have demonstrated the method of state space reconstruction to
embed a time series in a state space, and then use that reconstruction to accomplish
several tasks. First, one can use the reconstruction to detect low-dimensional chaos in
apparently random data. If low-dimensional chaos is detected, we can accomplish
short-term prediction ﬁsing a local linear technique. We discussed issues crucial to the
reconstruction, namely, choice of delay parameter and embedding dimension.

We feel that there is still room for research and development in many éreas. For
instance, there seems to be no prescription or theory in existence yet for choosing the
optimal value of nearest neighbors to use. For most of our examples, the value of five
seemed to work reasonably well, but we have no real explanation for this. Also, we do
not know of an "optimal" way to determine the breaks for the histograms used in the
technique of average mutual information.

There is also room for research in the areas of noisy time series and number of data
points needed to calculate invariants. Clearly, more noise is bad and more data points is
good, but it seems that these ideas might be made more precise than they have been so far
in the literature. Finally, the staggered time series brought up many interesting questions
such as why do we see structure and what does it mean?

Overall, we conclude that the methods we discussed worked well When applied,
i.e., we were mostly able to determine which time series arose from low-dimensional,

chaotic processes and which did not. For the chaotic time series, we were able to
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accomplish some type of short-term prediction. However, when distinguishing between
low-dimensional chaos and noise, we stress that one needs to take into account the results
of all methods discussed, not just one or two. Especially for “tricky" cases like the volume
preserving map we discussed, one may reach a false conclusion if the results of only one
or two methods are considered. In general though, we are satisfied with the application
and results of the time series methods we discussed. We feel that these techniques provide
a valuable method for analyzing time series, expecially those arising from low-dimensional,

chaotic dynamical systems.
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APPENDIX A. AVERAGE MUTUAL INFORMATION (S-PLUS)

# Read in data file:
series_read.table("a:smx5000.dat")

# Transform data to accomodate changing delay parameter:
q <- t(series)
n_length(q)
for (delay in 1:10){
x_runif(floor(n/delay))
for(i in 1:floor(n/delay))

{ x[i]_q[delay*i]}

# Initialize:
nl_length(x)
R_runif(floor(n/delay))
S_runif(floor(n/delay))
Q_runif(floor(n/delay))
summand_runif(nl-1)
Muinf_runif(10)

# Apply 1-D and 2-D histograms:
breaksl c(-15:15)
xbreaksl breaksl
ybreaksl_breaks1
len_length(breaks1)
hm_hist(x,breaks=breaks1 ,plot=F,probability=T)
cts_hm$counts
hm2_hist2d(x,x,xbreaks=xbreaks1,ybreaks=ybreaks1,scale=T)
cts2_hm2$z '

# Calculate average mutual information:
for (jin 1:(n1-1)){
for (min 1:(len-1))
{if (x[j] > breaks1[m] & x[j] < breaks1[m+1])
R[j]_cts[m]}

for (min 1:(len-1))
{if (x[j+1] > breaks1[m] & x[j] < breaks1[m+1])
S[j]_cts[m]}

for (a in 1:(len-1)) {for (b in 1:(len-1)) {
if (x[j] > xbreaks[a] & x[j] < xbreaks[a+1]
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& x[j+1] > ybreaks[b] & x[j+1] < ybreaks[b+1])
Q[j]_cts2[a,b] }}}
summand[j]_Q[i]*(In(Q[i}/(R[i]*S[i]))/In(2)) }

I=cumsum(summand)
Muinf[delay]_I[n1-1] }

# Plot average mutual inforamation vs. delay:

win.graph()
plot(delay,Muinf)
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APPENDIX B. GLOBAL FALSE NEAREST NEIGHBORS
(MATLAB)

% Specify time series:
x=vect(1:1000);
n=length(x);
%
% embedding dimension = 1
spacel=x";
sizel=zeros(n,n);
fori=l:n
for j=1:n
if i==j, size1(i,j)=NaN,;
else if 1>}, sizel(i,j)=sizel(j,i);
else
size1(i,j)=norm(spacel(i)-spacel(j));
end
end
end
end

nearindex1=zeros(1,n);
neardist1=zeros(1,n);
fori=1:n
[Y,I]=sort(sizel(i,:));
nearindex1(i)=I(1); % index of nearest neighbor
neardist1(i)=Y(1); % distance to nearest neighbor
end
%
% go to embedding dimension 2
d2=2
space2=zeros(2,n-d2+1);
for i=1:n-d2+1
space2(:,))=[x(n-i+1),x(n-i)]';
end

size2=zeros(n-d2+1,n-d2+1);

for i=1:n-d2+1

for j=1:n-d2+1

if i=5, size2(i,j)=NaN;

else if 1], size2(i,j)=size2(j,i);

else
size2(1,j)=norm(space2(:,i)-space2(.,j));
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end
end
end
end

nearindex2=zeros(1,n-d2+1);
neardist2=zeros(1,n-d2-+1);
for i=1:n-d2+1
[Y.I]=sort(size2(i,:));
nearindex2(i)=I(1); % index of nearest neighbor
neardist2(1)=Y(1); % distance to nearest neighbor
end

% Is d=1 the correct embedding dimension?
count=zeros(1,n-d2+1);
=L
fori=2:n
if nearindex1(i) == 1, count(j)=NaN;
elseif abs(space2(2,n-d2+3-i)-space2(2, (n-d2+1)-(nearindex1(i)-2))/(neardist1(i))) >
10
count(j)=1;
L
end
end

percentl= (sum(count(ﬁnd(count>0))))/(length(count)-sum(isnan(count)))
% this is percentage of global false nearest neighbors in dimension 1

%
% go to embedding dimension 3

d3=3

space3=zeros(d3,n-d3+1);

for i=1:n-d3+1
space3(:,i)=[x(n-i+1),x(n-i),x(n-i-1)];
end

size3=zeros(n-d3+1,n-d3+1);
for i=1:n-d3+1
for j=1:n-d3+1
if i==j, size3(i,j)=NaN;
else if i>], size3(i,j)=size3(j,i);
else
size3(i,j)=norm(space3(:,i)-space3 R))R
end
end
end
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end

. nearindex3=zeros(1,n-d3+1);
neardist3=zeros(1,n-d3+1),
for i=1:n-d3+1
[Y,I]=sort(size3(4,:));
nearindex3(1)=I(1); % index of nearest neighbor
neardist3(i)=Y(1); % distance to nearest neighbor
end

% Is d=2 the correct embedding dimension?
count=zeros(1,n-d3+1);
for i=1:n-d3+1
if nearindex2(i) == n-d2+1, count(i)=NaN;
elseif (abs(space3(3,1)-space3(3,nearindex2(i)))/(neardist2(i))) > 10
count(i)=1;
end
end

pefcent2=(sum(count(ﬁnd(counf>0))))/(length(count)-sum(isnan(count)))
% this is percentage of global false nearest neighbors in dimension 2

%

% go to embedding dimension 4

d4=4

spaced4=zeros(d4,n-d4+1);

for i=1:n-d4+1
space4(:,i)=[x(n-i+1),x(n-i),x(n-i-1),x(n-i-2)]’;

end

sized=zeros(n-d4+1,n-d4+1);

for i=1:n-d4+1

for j=1:n-d4+1

if i==j, size4(i,j)=NaN;

else if i>j, sized(i,j)=size4(j,i);

else
size4(i,j)=norm(space4(;,i)-spaced(:,j));

end

end

end

end

nearindex4=zeros(1,n-d4+1);
neardist4=zeros(1,n-d4+1);
for i=1:n-d4+1

[Y I]=sort(size4(i,:));
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nearindex4(i)=I(1); % index of nearest neighbor
neardist4()=Y(1); % distance to nearest neighbor
end

% Is d=3 the correct embedding dimension?
count=zeros(1,n-d4+1);
for i=1:n-d4+1
if nearindex3(i) == n-d3+1, count(i) = NaN;
elseif (abs(space4(4,i)-space4(4,nearindex3(i)))/(neardist3 (@) >10
count(i)=1;
end
end

percent3= (sum(c'ount(ﬁnd(count>O))))/(length(count)—sum(isnan(count)))
% this is percentage of global false nearest neighbors in dimension 3
%

% go to embedding dimension 5

ds=5

space5=zeros(d5,n-d5+1);

for i=1:n-d5+1
space5(.,i)=[x(n-i+1),x(n-i),x(n-i-1),x(n-i-2),x(n-i-3)];
end

size5S=zeros(n-d5+1,n-d5+1);
for i=1:n-d5+1
for j=1:n-d5+1
if i==j, size5(4,j)=NaN;
else if i>j, size5(1,j)=size5(,i);
else
size5(i,j)=norm(space5(:,i)-space5(.,j));
end
end
end
end

nearindex5=zeros(1,n-d5+1);
neardist5=zeros(1,n-d5+1);
for i=1:n-d5+1
[Y,I]=sort(size5(i,:));
nearindex5(i)=I(1); % index of nearest neighbor
neardist5(1)=Y(1); % distance to nearest neighbor
end

% Is d=4 the correct embedding dimension?
count=zeros(1,n-d5+1); '
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for i=1:n-d5+1
if nearindex4(i) == n-d4+1, count(i)= NaN;
elseif (abs(space5(5,1)-space5(5, neanndex4(1)))/(neardlst4(1))) >10
count(i)=1;
end
end

percent4= (sum(count(find(count>0))))/(length(count)-sum(isnan(count)))
% this is percentage of global false nearest neighbors in dimension 4

%

% go to embedding dimension 6

d6=6

space6=zeros(d6,n-d6+1);

for i=1:n-d6+1
space6(:,)=[x(n-i+1),x(n-1),x(n-i-1),x(n-i-2),x(n-i-3),x(n-i-4)]’;

end

size6=zeros(n-d6+1,n-d6+1);

for i=1:n-d6+1

for j=1:n-d6+1

if i==j, size6(i,j)=NaN;

else if i>j, size6(1,j)=size6(j,i);

else
size6(i,j)=norm(space6(:,i)-space6(:,j));

~end

end

end

end

nearindex6=zeros(1,n-d6+1);
neardist6=zeros(1,n-d6+1);
for i=1:n-d6+1
[Y,I]=sort(size6(i,));
nearindex6(1)=I(1); % index of nearest neighbor
neardist6(1)=Y(1); % distance to nearest neighbor
end

% Is d=5 the correct embedding dimension?
count=zeros(1,n-d6+1);
for i=1:n-d6+1
if nearindex5(i) = n-d5+1, count(i)=NaN;
elseif (abs(space6(6,i)- space6(6 nearindex5(i)))/(neardist5(i))) > 10
count(i)=1;
end
end
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percent5= (sum(count(ﬁnd(count>0))))/(1ength(count)-sum(isnan(count)))
%% this is percentage of global false nearest neighbors in dimension 5

%
% go to embedding dimension 7
d7=7
space7=zeros(d7,n-d7+1);
for i=1:n-d7+1
space7(:,i)=[x(n-i+1),x(n-i),x(n-i-1),x(n-i-2),x(n-i-3 ), x(n-i-4),x(n-i-5)1";
end

size7=zeros(n-d7+1,n-d7+1);

for i=1:n-d7+1

for j=1:n-d7+1

if i==j, size7(i,j)=NaN;

else if i>], size7(i,j)=size7(j,i);

else
size7(i,j)=norm(space7(,i)-space7(:,j));

end

end

end

end

nearindex7=zeros(1,n-d7+1);
neardist7=zeros(1,n-d7+1);
for i=1:n-d7+1
[Y I]=sort(size7(i,’));
nearindex7(i)=I(1); % index of nearest neighbor
neardist7()=Y(1); % distance to nearest neighbor
end

% Is d=6 the correct embedding dimension?
count=zeros(1,n-d7+1),

for i=1:n-d7+1

if nearindex6(i)= n-d6+1, count(i)=NaN;

elseif (abs(space7(7,i)-space7(7,nearindex6(i)))/(neardist6(i))) >10
count(i)=1;
end

end

percent6= (sum(count(ﬁnd(count>0))))/(1ength(count)—sum(isnan(count)))
% this is percentage of global false nearest neighbors in dimension 6

% plot results:
dim=[1:6];
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perc=[percent1,percent2 percent3,percent4,percent5,percent6]
plot(dim,perc) :
xlabel('embedding dimension’)

ylabel(‘percentage of global false nearest neighbors')
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APPENDIX C. PREDICTION ALGORITHMS (MATLAB)

One-step prediction is accomplished using a local linear téchnz'que:

load smx20000 % contains previously generated data
delay=10 % delay parameter

d=3 % embedding dimension

r=1; % row index for results matrix

c=1; % column index for results matrix

results=zeros(10,9);

for n=[500,1000,2000,3000,4000,5000,6000,7000,8000,9000]
for k=[2,3,4,5,6,7,8,9,10]

% Create delayed time series from original time series:
y=smx20000(1:n);
x=zeros(1,floor(n/delay));
for q=1:floor(n/delay)
x(q)=y(delay*q);
end
nl=length(x);

% Create state space: there are n-d+1 delay vectors in space
space=zeros(d,n1-d+1);
for =1:n1-d+1;
space(:,i)=[x(nl-i+1),x(n1-i),x(n1-i-1]"
end

% Find k nearest neighbors:

size=zeros(1,n1-d);

q=1;

for m=2:n1-d+1
size(q)=norm(space(:,1)-space(:;,m));
q=q+l;

end

% Get the k nearest neighbors out of the state space
[Y,I]=sort(size);

set=I(1:k);

covar=space(:,set+1);
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% Do multiple regression:
h=zeros(1,k)’;
=L
for i=set+1
h(j)=space(1,i-1); % for each nearest neighbor, get the 1st component
% of where that state went to next

L
end
e=ones(k,1); ‘
A=[e covar']; % prepares matrix of covariates for regression
beta= A\h; % computes regression coefficients

% Compute the prediction:

predict=beta'*[1; space(:,1)];
true=smx20000((delay*floor(n/delay))+delay);
onesteperror=true-predict;

% Display the results:;
results(r,c)=abs(onesteperror);

if c==9, c=1;
_else c=c+1;
end

end
r=r+1;
end

% Display results:

results

meanbycol=mean(results) % for each column -
stdbycol=std(results)

minbycol=min(results)

maxbycol=max(results)

meanbyrow=mean(results') % for each row
stdbyrow=std(results')

minbyrow=min(results")

maxbyrow=max(results")

overallmax=max(max(results))
overallmin=min(min(results))
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Multi-step, iterative, prediction is accomplished using a local-linear technique:

delay=2 % delay parameter

d=3; % embedding dimension

n=1000; % number of data points in time series
k=5; % number of nearest neighbors
T=200; % number of steps to predict ahead

predict=zeros(1,T);
true=zeros(1,T);
- onesteperror=zeros(1,T);

% Create delayed time series from original time series:
y=stagger2(1:n); % must specify existing time series
x=zeros(1,floor(n/delay));

for g=1:floor(n/delay)

x(q)=y(delay*q);

end
nl=length(x);

t=1;
while t < (T+1)

% Create state space: there are n-d+1 delay vectors in space
space=zeros(d,n1-d+1); '

for i=1:n1-d+1;

space(:,i)=[x(n1-i+1),x(nl-i),x(nl--1)]};

end

% Find k nearest neighbors:

size=zeros(1,n1-d);

=L

for m=2:n1-d+1
size(q)=norm(space(;,1)-space(:,m));
q=q+1;

end

% Get the k nearest neighbors out of the state space
[Y I]=sort(size); -

set=I(1:k);

covar=space(:,set+1);

% Do multiple regression:
h=zeros(1,k)";
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=L

for i=set+1
h(j)=space(1,i-1); % for each nearest neighbor, get the 1st
% component of where that state went to next
L
end
e=ones(k,1);
A=[e covar']; % prepares matrix of covariates for regression
beta= A\h; % computes regression coefficients

% Compute the prediction:
predict(t)=beta"*[1; space(;,1)];

true(t)=stagger2((delay*floor(n/delay))+t*delay);

onesteperror(t)=true(t)-predict(t);
x(floor(n/delay)-+t)=predict(t);

t=t+1;
nl=length(x);

end

% Mean square error calculation:
summand1=zeros(1,T);
summand2=zeros(1,T);
E=zeros(1,T);

avgx=mean(true);

for j=1:T
summand1(j)=(true(j)-predict(j))"2;
summand2(j)=((true(j)-avgx))"2;

end

cumsuml=cumsum(summand1);
cumsum2=cumsum(summand?2);

% Calculate prediction horizon:
phoriz=zeros(1,T);
for m=1:T
E(m)=(cumsum1(m))/(cumsum2(m));
if E(m) >= 1, phoriz(m)=1;, end
end

horiz=min(find(phoriz==1))
end
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% Plot results:
plot(1:T,predict,'0',1:T,true)
xlabel(‘prediction step')
ylabel(‘time series value')
pause

figure

plot(1.T,E,1.T,E,'*")
xlabel('prediction step')
ylabel('normalized mean square error’)
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